Многочисленные непищевые вещества, токсичные для организма, поступают различными путями в пищевые продукты и, соответственно, в организм человека. К данным веществам относятся: гербициды, пестициды, металлоорганические соединения, антибиотики, применяемые в животноводстве, миотоксины, гормоноподобные вещества, используемые для стимуляции роста сельскохозяйственных животных. Полициклические соединения, многие из которых обладают мутагенной и канцерогенной активностью, другие соединения могут кумулировать, попадая в организм человека через цепи питания.

В процессе приготовления пищи (мариновании, варке жарке, копчении) происходит ее загрязнение тяжелыми металлами, вследствие контакта сырья при термической обработке с посудой и аппаратурой создаются условия проникновения в пищу многих токсикантов и тяжелых металлов.

Цепи питания являются одним из основных путей поступления вредных веществ в организм человека (до 70-80%). Эти цепи берут начало от сельскохозяйственных угодий и оканчиваются человеком, который, являясь конечным звеном, может получать продукты с концентрацией токсикантов в 10-1000 раз более высокой, чем в почвах.

Ухудшение экологической обстановки в мире и связанный с этим высокий уровень загрязненности продуктов питания радионуклидами, токсичными химическими соединениями, биологическими агентами и микроорганизмами способствуют нарастанию негативных тенденций в состоянии здоровья. При консервировании продуктов основным источником загрязнения свинцом являются жестяные банки, которые используются для упаковки 10 — 15% пищевых изделий, при этом свинец попадает в продукты из свинцового припоя в швах банок. Показано, что около 20% свинца в рационе людей (кроме детей до 1 года) поступает из консервированной продукции, причем 13 — 14% из припоя, а остальные 6 — 7% — из самого пищевого продукта. В то же время необходимо отметить, что с внедрением новых технологий пайки и закатки банок содержание свинца в консервированной продукции снижается.

Все вредные вещества пищи можно разделить на 2 группы: первая группа — это собственно природные компоненты пищевых продуктов, способные при обычном или избыточном потреблении вызывать неблагоприятное воздействие на организм человека и вторая группа — это вещества, не свойственные продуктам питания, которые попадают в пищу из внешней среды. Наибольшую опасность для здоровья человека представляют загрязнители (контаминанты) пищевых продуктов, не свойственные пищевым продуктам, а попадающие из окружающей среды. Истинные загрязнители пищевых продуктов разделяют на вещества природного (биологического) происхождения и вещества химического (антропогенного) происхождения. Загрязнение продовольственного сырья и пищевых продуктов чужеродными веществами напрямую зависит от степени загрязнения окружающей среды. К приоритетным загрязнителям пищевых продуктов антропогенного происхождения относятся токсичные (тяжелые) металлы, радионуклеиды, пестициды и продукты их метаболической деградации, нитраты, нитриты и N-нитрозоамины, полициклические ароматические углеводороды(бензпирен), полихлорированные дифенилы, диоксины, стимуляторы роста сельскохозяйственных животных (гормоны, антибиотики). Реальную опасность представляют природные контаминанты биологического происхождения — бактериальные токсины, токсичные метаболиты микроскопических грибов (микотоксины), некоторые токсины морепродуктов.

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

С промышленными и коммунальными стоками, в результате атмосферных выпадений происходит поступление тяжелых металлов и в природные воды]. Помимо непосредственного загрязнения источников питьевого водоснабжения большую опасность представляет загрязнение гидробионтов, которых человек употребляет в пищу.

Основным резервуаром, где откладываются тяжелые металлы, является почва. Почва накапливает многолетние поступления тяжелых металлов, попадающие в нее из атмосферы в составе газообразных выделений, дымов и техногенной пыли; в виде отходов промышленности, сточных вод, бытового мусора, минеральных удобрений.

Немаловажным источником повышенных микроэлементных поступлений в организм человека и животных является пища, выращенная на загрязненных почвах. Специфичность тяжелых металлов заключается в том, что по степени насыщения ими тканей растений их основные органы располагаются так

корень > стебель, листья > семена > плоды.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

Формально определению тяжелые металлы соответствует большое количество элементов.

Токсичные металлы, попавшие в организм, распределяются в нем неравномерно. Первый удар принимают на себя основные органы выделения (печень, почки, легкие, кожа). В частности, попав в печень, они могут претерпевать различные изменения, даже с благоприятным для организма исходом, что способствуют их обезвреживанию и выведению через почки и кишечник. Если эти механизмы уже не срабатывают, то происходит накопление тяжелых металлов в организме человека

До 90 % общего содержания ртути в организме скапливается в почках. У людей, связанных с ртутью профессионально, обнаружены ее повышенное содержание в веществе головного мозга, печени, щитовидной железе и гипофизе. Свинец накапливается в костях, его концентрация здесь может в десятки и сотни раз превышать концентрацию в других органах. Кадмий откладывается в почках, печени, костях; медь — в печени. Мышьяк и ванадий накапливаются в волосах и ногтях. Олово — в тканях кишечника; цинк — в поджелудочной железе. Сурьма близка по своим свойствам мышьяку и оказывает на организм сходное действие.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для доксического проявления.

Кроме токсического действия тяжелые металлы обладают канцерогенным действием. По данным Международного агенства по изучению рака IARC для человека канцерогенными являются соединения мышьяка (рак легких и кожи), хрома (рак легких и верхних дыхательных путей), никеля (Ni) (группа 1) и кадмия (рак предстательной железы) (группа 2Б). Канцерогенными для животных и потенциально опасными для человека признаны соединения свинца (Pb), кобальта (Co), железа (Fe), марганца (Mn) и цинка (Zn). Данные о канцерогенном влиянии многих химических элементов в настоящее время изучаются и дополняются.

В конечном итоге тяжелые металлы понижают общую сопротивляемость организма, его защитно-приспособительные возможности, ослабляют иммунную систему, нарушают биохимический баланс в организме. Медиками ведется поиск натуральных протекторов, способных ослабить или нейтрализовать вредное воздействие. За экологами же остаются задачи объективной оценки и прогноза степени загрязненности нашей среды обитания, а также большая работа по ограничению их поступлений во внешнюю и внутреннюю среду человека.

Медиками-гигиенистами определены ПДК тяжелых металлов, остаточных количеств пестицидов, радионуклидов в почвах по показателям их вредности. Нормирование подразделяют на транслокационное (переход нормируемого элемента в растение), миграционное воздушное (переход в воздух), миграционное водное (переход в воду) и общесанитарное, гигиеническое (влияние на самоочищающую способность почв и почвенный микробиоценоз).

Таблица – ПДК тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах, мг/кг (СанПиН 42-123-4089-86)

Элемент

хлеб

овощи

фрукты

Ртуть

0,02

0,02

0,02

Кадмий

0,03

0,03

Свинец

Продолжение табл.

Пищевые продукты растительного происхождения

Мышьяк

Сурьма

Медь

10,0

Цинк

50,0

10,0

10,0

Никель

Хром

Олово

200,0

200,0

В результате действия многочисленных факторов пища становится источником и носителем большого числа потенциально опасных и токсичных веществ химической и биологической природы. Положение дел в этой области в России, особенно за последние пять лет, ухудшилось в связи с экономическим кризисом, демонополизацией пищевой промышленности, увеличением объемов поставок продовольствия из-за рубежа, ослаблением контроля за производством и реализацией продуктов питания, что вызывает серьезную тревогу. До 10% проб пищевых продуктов в целом по России содержат тяжелые металлы: свинец, кадмий, медь, цинк и другие, в том числе до 5% в концентрациях, превышающих предельно допустимые.

2. ИЗМЕНЕНИЕ КЛИМАТА В РЕЗУЛЬТАТЕ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Исследования показывают, что климат Земли никогда не был статичным. Он является динамичным, подверженным колебаниям во всех временных масштабах, начиная от десятилетий до тысяч — миллионов лет. К числу наиболее заметных колебаний относится цикл более порядка 100 000 лет — ледниковые периоды, когда климат Земли был в основном холоднее по сравнению с настоящим, после чего следовали более теплые межледниковые периоды. Эти циклы определялись причинами естественного характера.
С начала промышленной революции изменение климата происходит ускоренными темпами в результате деятельности человека. Причина этого изменения, которая накладывается на естественную изменчивость климата, приписывается прямым или косвенным образом деятельности человека, которая изменяет состав атмосферы.

Современная деятельность человека, так же как и его деятельность
в прошлом, существенно изменила природную среду на большей части нашей планеты, эти изменения до недавнего времени были только суммой многих локальных воздействий на природные процессы. Они приобрели планетарный характер не в результате изменения человеком природных процессов глобального масштаба, а потому, что локальные воздействия распространились на большие пространства. Иначе говоря, изменение фауны в Европе и Азии не влияло на фауну Америки, регулирование стока американских рек не изменило режима стока африканских рек и так далее. Только в самое последнее время началось воздействие человека на глобальные природные процессы, изменение которых может оказать влияние на природные условия всей планеты.

Принимая во внимание тенденции развития хозяйственной деятельности человека в современную эпоху, недавно было высказано предложение, что, дальнейшее развитие этой деятельности может привести к значительному изменению окружающей среды, в результате которого произойдет общий
кризис экономики и резко сократится численность населения.
К числу крупных проблем относится вопрос о возможности изменения под влиянием хозяйственной деятельности глобального климата нашей
планеты. Особое значение этого вопроса заключается в том, что такое изменение может оказать существенное влияние на хозяйственную деятельность человека раньше всех других глобальных экологических нарушений.

Изменение климата планеты в результате деятельности человека — проблема не только чрезвычайной важности, но и чрезвычайной сложности. Основополагающая теория о том, как человеческое общество способствует потеплению окружающей среды сжиганием ископаемого топлива, появилась более ста лет назад. Теоретическим моделям окружающей среды, однако, всего несколько десятков лет, и они по-прежнему остаются несовершенными.
В то же время перепады температуры, неожиданное выпадение осадков и другие подобные явления свойственны самому климату как таковому, вне зависимости от деятельности человека. Поэтому так страшно отделение человеческого фактора от природных факторов. Тем более поразительно, что мировому сообществу удалось выработать согласованный подход к решению данной проблемы. Дело в том, что не только научная сторона этого вопроса является сложной и неясной, но и интересы разных стран отличаются друг от друга.

Так глобальное потепление может хуже всего сказаться на тропических странах, но принести определенную пользу странам с более холодным климатом, таким как Канада и Россия, например. Прибрежные страны могут пострадать от повышения уровня воды в океане, тогда как это не окажет практически никакого влияния на удаленные от моря регионы.

Понижение спроса на ископаемое топливо больно ударит по странам, живущим за счет добычи угля и нефти, в то время как производители других видов энергии, таких как гидроэлектроэнергия, только выиграют от этого. Короче говоря, изменение климата планеты — это вопрос, вызывающий столкновение различных интересов при отсутствии определенности относительно его причин.

При определенных условиях влияние хозяйственной деятельности
человека на климат может в сравнительно близком будущем привести к потеплению, сравнимому с потеплением первой половины 20 века, а затем намного превзойти это потепление.

Одной из причин изменения климата является использование разнообразных аэрозолей.

Аэрозоли — это мелкие частицы пыли, которые находятся во взвешенном состоянии в атмосфере. Они образуются главным образом в результате химических реакций между газообразными загрязнителями воздуха, поднятого на высоту песка или брызг морской воды, лесных пожаров, сельскохозяйственной и промышленной деятельности, а также автомобильных выхлопов. Аэрозоли образуют мутный слой тропосфере, самом низком слое до высоты 10 км атмосфере. Они могут также образоваться высоко атмосфере после вулканического извержения и даже в стратосфере на высоте порядка 20 км. В безоблачные дни небо становится из-за них не таким абсолютно синим, а скорее беловатым (особенно направлении Солнца). Лучше всего аэрозоли видны при восходе и заходе солнца, когда путь лучей атмосфере до поверхности Земли больше.

Аэрозоли являются высокоэффективными рассеивателями солнечного света, поскольку их величина составляет, как правило, несколько десятых долей микрона. Некоторые аэрозоли (такие, как сажа) поглощают также свет. Чем больше они поглощают, тем больше нагревается тропосфера и тем меньше солнечной радиации может достигнуть поверхности Земли. В результате этого аэрозоли могут понизить температуру приземного слоя атмосферы.

Большие количества аэрозолей могут привести, таким образом, к охлаждению климата, которое компенсирует в определенной степени эффект потепления в результате увеличения объема парниковых газов. Кроме того, аэрозоли обладают дополнительным косвенным эффектом охлаждения благодаря своей способности усиливать облачный покров. Продолжительность нахождения частиц пыли в атмосфере гораздо короче продолжительности существования парниковых газов, поскольку они могут исчезнуть в результате осадков в течение недели. Последствия воздействия аэрозолей также гораздо более локальны по сравнению с широко распространенным воздействием парниковых газов.

В связи с ростом мирового населения многократно возросла нагрузка на культивируемые участки суши. Интенсивное земледелие, выпас скота и истощение запасов подводных вод из-за их использования для ирригации привели к деградации почвы в нескольких районах. Альмерия (юг Испании)является одним из многочисленных примеров, когда земле угрожает опасность опустынивания. Изменения в землепользовании негативно воздействуют на климатические параметры региона, такие, как температура и влажность, которые, в свою очередь, оказывают воздействие на региональный и глобальный климат.

Со времени промышленной революции зеленые леса на всем земном шаре, в настоящее время находящиеся в основном в зоне тропических дождей, были вытеснены товарными и прочими культурами. Люди также изменяют окружающую среду в результате выращивания скота, которое повышает спрос на воду. Помимо выпаса скота на естественных пастбищах, люди существенно изменили частоту, интенсивность и объем выпаса в результате одомашнивания скота. Фактически, усилиям по сдерживанию опустынивания в сахельских регионах и в других местах мешают чрезмерный выпас скота и рубка деревьев для получения дров.

Урбанизация способствовала изменению климата. В начале нынешнего столетия жители городов составляли почти половину мирового населения. Согласно оценкам, город с населением в 1 млн человек производит ежедневно 25 000 тонн двуокиси углерода и 300 000 тонн сточных вод. Концентрация деятельности и выбросы являются достаточными для того, чтобы изменить местную атмосферную циркуляцию вокруг городов. Эти изменения являются столь значительными, что могут изменить циркуляцию на уровне региона, а это, в свою очередь, сказывается на глобальной циркуляции. Если подобное воздействие будет продолжаться, то ощутимым станет долгосрочное воздействие на климат.

В течение последних десятилетий появляется все больше свидетельств изменения климата, основанных на изменениях физических характеристик атмосферы, а также фауны и флоры в различных частях мира.

Одним из наиболее убедительных аргументов в отношении изменения климата является тот факт, что столь большое количество независимо проведенных наблюдений подтверждает, что за последний век общее повышение температуры поверхности составило 0, 6 0 С. Со времени промышленной революции ускоренными темпами продолжалось увеличение содержания в атмосфере двуокиси углерода.

Возрастают как максимальные, так и минимальные среднесуточные температуры, однако минимальные температуры возрастают более быстрыми темпами по сравнению с максимальными. Измерения температуры на поверхности Земли, а также измерения при помощи радиозондов и спутников показывают, что тропосфера и поверхность Земли стали более теплыми и что происходит охлаждение стратосферы.

Все большее количество свидетельств на основе палеоклиматических данных свидетельствует о вероятности того, что темпы и продолжительность потепления в ХХ веке являются более значительными по сравнению с любым другим временным периодом за последнюю тысячу лет. Девяностые годы ХХ века являются, вероятно, самым теплым десятилетием тысячелетия в северном полушарии. Самой высокой зарегистрированной температурой характеризовался 1998 г. , а 2001 г. был на втором месте.

Продолжалось увеличение объема ежегодных осадков над сушей в средних и высоких широтах северного полушария, за исключением Восточной Азии. Паводки наблюдались даже в тех местах, где дождь обычно является редким событием.

Облачность над континентальными регионами средних и высоких широт северного полушария увеличилась с начала ХХ века почти на 2 %. Уменьшение площади снежного покрова и континентального льда по-прежнему характеризуется позитивной связью с увеличением температуры поверхности земли. Уменьшается объем морского льда в северном полушарии, однако не очевидными являются сколь-либо существенные тенденции изменения морского льда в Антарктике.

В течение последних 45 -50 лет арктический морской лед стал тоньше почти на 40 %в период между окончанием лета и началом осени.

Показатель среднего глобального повышения уровня моря в течение ХХ века находится в пределах 1, 0 -2, 0 мм/г. Эти показатели роста больше соответствующих показателей XIX века, хотя столь давние данные являются весьма немногочисленными. Повышение уровня моря в ХХ веке превышает, вероятно, в десять раз среднюю величину этого повышения за последние 3 000 лет.

Развитие явления Эль-Ниньо/южное колебание (ЭНСО) было необычным с середины 70-х годов XX века по сравнению с предшествующими 100 годами. Наводнения и засухи, нередко сопровождаемые гибелью урожаев и лесными пожарами, стали более частыми, хотя размеры общей затронутой поверхности суши увеличились относительно незначительно.

Наблюдалось явное увеличение сильных и экстремальных осадочных явлений.

В течение ХХ века происходило относительно небольшое увеличение общего размера континентальных районов, которые подверглись суровым засухам или повышенной влажности, хотя в некоторых районах отмечались изменения. Убедительных свидетельств, указывающих на то, что характеристики тропических и внетропических штормов изменились, не существует.

Природные системы, такие, как ледники, коралловые рифы, атоллы, леса, увлажненные земли и т. д. , уязвимы для изменения климата. Некоторые эксперты оценивают, что более четверти коралловых рифов во всем мире разрушены в результате потепления морей. Они предупреждают, что если не будут приняты срочные меры, то большая часть из остающихся рифов погибнет через 20 лет. За последние два года в некоторых наиболее сильно пораженных районах, таких, как Мальдивские и Сейшельские о-ва в Индийском океане, по оценкам, обесцвечено до 90% коралловых рифов.

Открытие «озоновой дыры» над Антарктикой в середине 80-х годов привело к интенсивным научным исследованиям в области химии и переноса в стратосфере. Стратосферный озон составляет приблизительно 90 %всего озона в атмосфере, в то время как остающиеся 10 %находятся в тропосфере, в самом низком слое атмосферы, при этом толщина слоя составляет 10 км у полюсов и 16 км в тропиках.

Недавние изменения регионально климата, особенно повышение температуры, уже отразилось на многих физических и биологических системах. Параметрами этого является следующее:

    увеличение продолжительности вегетационных периодов в средних-высоких широтах;

    уменьшение популяций некоторых растений и животных;

    сокращение и перемещение границ нахождения растений и животных в направлении полюсов и более высоких широт;

    уменьшение площади снежного покрова и континентального льда, что явно связанно с увеличением температуры поверхности земли;

    более позднее образование льда и более ранний ледоход на реказ о озерах;

    таяние вечной мерзлоты;

    сокращение размеров ледников

    Таким образом, изменение климата, возможно, является первым реальным признаком глобального экологического кризиса, с которым столкнется человечество при стихийном развитии техники и экономики.
    Основной причиной этого кризиса на его первой стадии будет пе-
    распределение количества осадков, выпадающих в различных районах земного шара, при их заметном уменьшении во многих районах неустойчивого увлажнения. Поскольку в этих районах расположены важнейшие области производства зерновых культур, изменение режима осадков может существенно затруднить проблему повышения урожайности для обеспечения продовольствием быстро растущего населения земного шара. По этой причине вопрос о предотвращения нежелательных изменений глобального климата является одной из существенных экологических проблем современности.

    Для предотвращения неблагоприятных изменений климата, возникающих под влиянием хозяйственной деятельности человека, осуществляются
    различные мероприятия; наиболее широко ведется борьба с загрязнением атмосферного воздуха. В результате применения во многих развитых странах различных мер, включающих очистку воздуха, используемого промышленными предприятиями, транспортными средствами, отопительными устройствами и так далее, в последние годы достигнуто снижение уровня загрязнения воздуха в ряде городов. Однако во многих районах загрязнение воздуха усиливается, причем, имеется тенденция к росту глобального загрязнения атмосферы. Это указывает на большие трудности предотвращения роста количества антропогенного аэрозоля в атмосфере.

    Еще труднее были бы задачи (которые пока еще не ставились)
    предотвращения увеличения содержания углекислого газа в атмосфере и роста тепла, выделяемого при преобразованиях энергии, используемой человеком.

    Простых технических средств решения этих задач не существует, кроме ограничений потребления топлива и потребления большинства видов энергии, что ближайшие десятилетия несовместимо с дальнейшим техническим прогрессом.

    Таким образом, для сохранения существующих климатических условий в близком будущем окажется необходимым применение метода регулирования климата. Очевидно, что при наличии такого метода он мог быть использован также для предотвращения неблагоприятных для народного хозяйства естественных колебаний климата и в дальнейшем, соответствующем интересам человечества.

    Из других путей воздействия на климатические условия заслуживает внимание возможность изменения атмосферных движений большого масштаба. Во многих случаях атмосферные движения неустойчивы, в связи с чем возможны воздействия на них с затратой сравнительно небольшого количества энергии.

    Из различных источников путей воздействия на климат, по-
    видимому, наиболее доступен для современной техники метод, основанный на увеличении концентрации аэрозоля в нижней стратосфере. Осуществление этого воздействия на климат имеет целью предотвратить или ослабить изменения климата, которые могут возникнуть через несколько десятилетий под влиянием хозяйственной деятельности человека. Воздействия такого масштаба могут быть необходимы в 21 веке, когда в результате значительного роста производства энергии может существенно повысится температура нижних слоев атмосферы. Уменьшение прозрачности стратосферы в таких условиях может предотвратить нежелательные изменения климата.

    СПИСОК ЛИТЕРАТУРЫ

  1. Будыко М.И. Изменения климата.- Ленинград: Гидрометеоиз-
    дат, 1974. СОВРЕМЕННЫЕ ЭКОЛОГИЧЕСКИЕ КАТАСТРОФЫ ЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ ОТ МЕТАЛЛУРГИЧЕСКОЙ И ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ ПОНЯТИЕ «ЭКОЛОГИЧЕСКИЕ ОТНОШЕНИЯ» СОСТОЯНИЕ И ПРОБЛЕМЫ ПРИРОДНОЙ СРЕДЫ

Некоторые металлы необходимы для нормального протекания физиологических процессов в организме человека. Однако при повышенных концентрациях они токсичны. Соединения металлов, попадая в организм, взаимодействуют с рядом ферментов, подавляя их активность.

Широкое токсическое воздействие проявляют тяжелые металлы. Это воздействие может быть широким (свинец) или более ограниченным (кадмий). В отличие от органических загрязняющих веществ, металлы не разлагаются в организме, а способны лишь к перераспределению. Живые организмы имеют механизмы нейтрализации тяжелых металлов.

Загрязнение пищевых продуктов наблюдается, когда сельскохозяйственные культуры выращиваются на полях вблизи промышленных предприятий или загрязнены городскими отходами. Медь и цинк концентрируются преимущественно в корнях, кадмий - в листьях.

Hg (ртуть): соединения ртути применяются в качестве фунгицидов (например, для протравливания посевного материала), используются при производстве бумажной массы, служат катализатором при синтезе пластмасс. Ртуть используется в электротехнической и электрохимической промышленности. Источниками ртути служат ртутные батареи, красители, люминесцентные лампы. Вместе с отходами производства ртуть в металлической или связанной форме попадает в промышленные стоки и воздух. В водных системах ртуть с помощью микроорганизмов может превращаться из относительно малотоксичных неорганических соединений в высокотоксичные органические (метилртуть (CH 3)Hg). Загрязненной оказывается, главным образом, рыба.

Метилртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм - заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

Руководством Codex CAC/GL 7 для любых видов рыбы, поступающих в международную торговлю (кроме хищной), установлен уровень 0,5 мг/кг, для хищной рыбы - (акула, меч-рыба, тунец) - 1 мг/кг.

Pb (свинец): свинец применяется для производства аккумуляторных батарей, тетраэтилсвинца, для покрытия кабелей, в производстве хрусталя, эмалей, замазок, лаков, спичек, пиротехнических изделий, пластмасс и т. п. Такая активная деятельность человека привела к нарушениям в природном цикле свинца.

Основной источник поступления свинца в организм - растительная пища.

Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты. Реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием -S-Pb-S-.

Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечнососудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны.

В течение прошлого десятилетия уровни свинца в пище значительно снизились благодаря сокращению его эмиссии автомобилями. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов.

Стандартом Codex STAN 230-2001 установлены следующие максимальные уровни свинца в пищевых продуктах:

Cd (кадмий): кадмий активнее свинца, и отнесен ВОЗ к веществам, наиболее опасным для здоровья человека. Он находит все большее применение в гальванике, производстве полимеров, пигментов, серебряно-кадмиевых аккумуляторов и батареек. На территориях, вовлеченных в хозяйственную деятельность человека, кадмий накапливается в различных организмах и с возрастом способен увеличиваться до критических для жизни величин. Отличительные свойства кадмия - высокая летучесть и способность легко проникать в растения и живые организмы за счет образования ковалентных связей с органическими молекулами белков. В наибольшей мере аккумулирует кадмий из почвы растение табака.

Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30-40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

Не исключено, что это канцероген для человека. Содержание кадмия должно быть уменьшено, в первую очередь, в диетических продуктах. Максимальные уровни должны быть установлены настолько низкими как это разумно достижимо.


Пестициды

Жёсткая регламентация по содержанию химических загрязнений в сельскохозяйственной продукции касается прежде всего пестицидов. Пестициды являются единственным загрязнителем, который сознательно вносится человеком в окружающую среду.

При определении допустимых концентраций пестицидов в продуктах исходят из того, что 80% их суточного поступления в организм человека происходит именно с продуктами питания. Выборочные пробы продуктов на содержание пестицидов показывают их наличие почти в 50% случаев. Поэтому контроль за содержанием пестицидов в сельскохозяйственной продукции является важным барьером по исключению негативного их влияния на здоровье человека.

Установлено, что влияние пестицидов происходит в виде общего токсического действия, а также приводит и к более отдалённым проявлениям – канцерогенным, тератогенным и другим. Наиболее эффективными и одновременно наиболее опасными для здоровья человека являются хлорорганические пестициды. Эти пестициды плохо разлагаются в грунте и воде, вызывают острые и хронические отравления с поражением печени, центральной и переферийной нервной систем, других органов. Одна из характерных особенностей хлорорганических пестицидов – способность накапливаться в пищевых цепочках до уровней, которые вызывают необратимые изменения в организмах животных и людей. С учётом этого применение этой группы пестицидов значительно ограничено, а наиболее токсичных запрещено.

Но не применять совсем сегодня пестициды нельзя – это практически единственный способ борьбы с вредителями сельского хозяйства. Широкое применение биологических методов защиты растений позволит уменьшить степень их загрязнения пестицидами. Для устранения тяжёлых последствий применения пестицидов важно прежде всего повышать культуру сельскохозяйственного производства, устранить элементарную безграмотность и невежество при применении химических веществ.

Тяжёлые металлы

Загрязнение тяжёлыми металлами атмосферы, почвы, воды является серьёзной проблемой, потому что всё больше культурных ландшафтов попадают под их воздействие, что в свою очередь сказывается как на продуктивности сельскохозяйственных культур, так и на качестве продуктов.

Источниками поступления тяжёлых металлов в почву могут быть атмосферные осадки. В осадках могут содержаться свинец, кадмий, мышьяк, ртуть, хром, никель, цинк и другие элементы.

Самым большим источником тяжёлых металлов является, безусловно, промышленность. Тяжёлые металлы поступают в атмосферу в виде аэрозолей, пыли, растворы в сточных водах и с мусором. Значительное загрязнение происходит из-за транспорта и прежде всего автомобильного.

Тяжёлые металлы в минеральных удобрениях являются естественными примесями, содержащимися в агрорудах. Отдельные пестициды также содержат в своём составе тяжёлые металлы.

При выращивании сельскохозяйственной продукции на участках загрязнённых тяжёлыми металлами необходимо решать две задачи:

· во-первых, подобрать подобрать наиболее устойчивые к загрязнению культуры, способные произрастать в экстремальных условиях загрязнения;

· во-вторых, важно, чтобы в товарной части растения не концентрировались токсичные количества тяжёлых металлов.

Исследования показывают, что тяжёлых металлов больше всего содержится в корнях, затем идут стебли и листья и, наконец, семена, клубни, корнеплоды. Иногда содержание тяжёлых металлов в корнеплодах сопоставимо с их содержанием в листьях и стеблях. Это объясняется тем, что на корнеплоде имеются корни с проводящей системой, пронизывающей его толщу. Наиболее чистыми от тяжёлых металлов будут клубни, так как они не имеют проводящих пучков. Загрязнение клубня свинцом происходит в результате диффузии за счёт контакта с загрязнённой почвой. Поэтому практически весь свинец задерживается в кожуре клубня.

На загрязнённых почвах картофель и томаты дают более чистую продукцию, чем корнеплоды – морковь и редис. Поэтому при выращивании продовольственных культур на почвах, содержащих заметные количества тяжёлых металлов, следует избегать размещения на них растений, у которых в пищу используются листья (салат, шпинат, лук, щавель и т.д.), стебли и корнеплоды.

Для выращивания сельскохозяйственных культур на загрязнённых почвах осуществляют ряд профилактических мероприятий. В первую очередь проводится комплексное агрохимическое окультуривание, заключающееся в повышении содержания гумуса, нейтрализации почвенной кислотности. В дальнейшем на этих полях размещают культуры, у которых в пищу идут части растений, слабо накапливающие тяжёлые металлы (томаты, бахчевые культуры, картофель). Если по каким-либо причинам нецелесообразно комплексное окультуривание отдельных загрязненных полей, на них следует размещать технические культуры: лён, коноплю, клещевину, картофель для переработки на крахмал или спирт, сахарную свеклу для получения сахара, а также эфиро – масличные растения для получения растительных масел или сырья для парфюмерной промышленности. В отдельных случаях эти участки можно отводить под сменники овощных или кормовых культур.

Нельзя использовать загрязнённые почвы для выращивания кормовых культур, так как на корм скоту идут чаще всего те части растений и в ту фазу развития, когда в них происходит заметное накопление металлов, а соответственно и накопление вредных веществ в мясе и молоке животных.

Разумеется, на загрязнённых почвах нельзя размещать овощи, перерабатываемые на продукты детского питания (шпинат, морковь и т.д.).

С 1986 года под воздействием последствий аварии на Чернобыльской АЭС произошло загрязнение сельскохозяйственных угодий, лесов смесью продуктов ядерного распада и нейтронной активации. Основными радионуклидами, определяющими радиационный фон являются цезий – 137 и стронций – 90. Это наиболее актуально для районов, прилегающих к 30-ти километровой зоне отчуждения и районам, попавшим под радиационный след.

Наибольшую опасность для здоровья человека, как источник поступления радионуклидов, представляют продукты животного происхождения, произведённые на загрязнённых территориях. Наиболее неблагоприятными в этом отношении является скотоводство и овцеводство, а свиноводство и птицеводство, когда животные обычно содержатся в закрытых помещениях и питаются концентрированными кормами, находятся в сравнительно лучших условиях. Критическим продуктом в случае загрязнения пастбищ является молоко. С молоком в организм человека в значительных количествах могут поступать такие опасные радионуклиды как йод-131, стронций-90 и другие. Особую опасность в начальный период представляет собой йод-131, что обусловлено большим выходом его в реакциях деления урана и плутония и его высокой миграционной способностью.

В районах выпадения радионуклидов загрязнение молока может достигать 300 –400 Бк/л при допустимом уровне не более 100 Бк/л, мяса 250 – 800 Бк/кГ при допустимом уровне 200 Бк/кГ. Связано это с употреблением скотом кормов с загрязнённых угодий и пастбищ, особенно в летний период. Но наиболее загрязнённой в таких районах является продукция лесного хозяйства.

Белково-витаминные концентраты

В последние десятилетия свою лепту в экологические беды стало вносить животноводство.

В 80-х годах двадцатого столетия широкое распространение получило производство комбикормов для скота с применением белково-витаминных концентратов (БВК) или другое название паприн.

Дело в том, что основное энергопотребление организма человека происходит за счёт употребления животной пищи и, в первую очередь, мяса. Белок, жиры, углеводы из мяса, молока и яиц люди усваивают на 90–98%, а из картофеля, овощей на – 70–95%. Соответственно и для питания животных необходимо использовать полноценные корма, насыщенные белками, витаминами и иными биологически активными веществами.

Такие вещества нашли в микроорганизмах, синтезируемых на основе углеводородного сырья (продукция нефте- и газопереработки). На их основе и были созданы БВК.

Однако последние, как оказалось впоследствии не столь безобидны.

Во-первых, само их производство вызвало вспышку целого ряда заболеваний у обслуживаемого персонала таких как различные аллергии, дерматит, бронхиальная астма, а так же в некоторых случая онкологические заболевания.

Во-вторых, это заболевание животных, накопление в их организмах вредных веществ для здоровья человека.

В частности, при кормлении БВК животных, как установлено экспериментами, может возникнуть эозинофилия в слизистой оболочке кишечника (увеличение зернистых лейкоцитов в крови), развиваются гранулематозные образования (узелковые разрастания) в печени, глубокие изменения в надпочечниках и тому подобное.

Также доказано, что в БВК присутствует избыток нуклеиновых кислот в 12–15 раз больше, чем в традиционных кормах. Эти биологические полимеры, как известно, обеспечивают хранение и передачу наследственной информации, таким образом оказывают воздействие на генетический код скота, птицы, а соответственно и на человека. В нуклеиновых кислотах, содержащихся в БВК, основная составляющая – рибонуклеиновая кислота (РНК). У людей она вызывает повышенное накопление мочевой кислоты в крови и моче, а соли последней быстро откладываются в организме. Поэтому употребление в пищу продукции животноводства с высоким содержанием РНК может вызвать серьёзные осложнения здоровья.

Передозировка в меню животных БВК ведёт к накоплению жира в печени, увеличению холестерина, а его избыток приводит к нарушениям обмена веществ.

В связи с этим установлены пределы внесения паприна в корм для скота – 20%, а для птицы –10–15%, хотя зачастую это делается «на глазок».

Науке ещё предстоит «докопаться» до оставшихся неясными свойств БВК. А поэтому, только строгое выполнение рекомендованных норм БВК в корме животных вместе с другими сбалансированными компонентами позволят избежать угрозы для здоровья человека.

, ТИПОВАЯ СХЕМА САНИТАРНО-МИКРОБИОЛОГИЧЕСКОГО КОНТРОЛЯ.doc , Найти значение функции.docx , виды контроля.pptx .

45. Методы определения показателей безопасности (тяжелые металлы, пестициды, нитраты, радионуклиды) в сырье, полуфабрикатах и готовой продукции

Под безопасностью продуктов питания следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие).

С продуктами питания в организм человека могут поступать значительные количества веществ, опасных для его здоровья. Поэтому остро стоят проблемы, связанные с повышением ответственности за эффективность контроля качества пищевых продуктов, гарантирующих их безопасность для здоровья потребителя.

Токсичные элементы (в частности тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. Обычно рассматривают 14 элементов: Hg, Pb, Cd, As, Sb, Sn, Zn, Al, Be, Fe, Cu, Ba, Cr, Tl.

Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг – методы - количественные аналитические и биологические методы.

Скрининг – методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы, как миниколоночный метод определения афлатоксинов, охратоксина А и зеараленона; методы тонкослойной хроматографии (ТСХ-методы) для одновременного определения до 30 различных микотоксинов, флуоресцентый метод определения зерна , загрязненного афлатоксинами, и некоторые другие.

Количественные аналитические методы определения микотоксинов представлены химическими, радиоиммунологическим и иммуноферментными методами. Химические методы являются в настоящее время наиболее распространенными.

Консерванты – это вещества, подавляющие развитие микроорганизмов и применяемые для предотвращения порчи продуктов. В больших концентрациях эти вещества опасны для здоровья, поэтому Минздравом России определены предельно допустимые количества их в продуктах и установлена необходимость контроля за их содержанием.

Определение диоксида серы . В ГОСТе описаны два метода определения: дистилляционный и йодометрический.

Дистилляционный метод с предварительной отгонкой диоксида серы применяется при определении малых количеств вещества, а также при арбитражных анализах; йодометрический, сравнительно простой, но менее точный метод, используют при определении диоксида серы с массовой долей его в продукте более 0,01%.

Дистилляционный метод основан на вытеснении свободного и связанного диоксида серы из продукта ортофосфорной кислотой и перегонке в токе азота в приемники с пероксидом водорода, где диоксид серы окисляется до серной кислоты. Количество полученной серной кислоты определяют ацидометрически – титрованием раствором гидроксида натрия или комплексонометрически – титрованием раствором трилона Б в присутствии эриохрома черного Т.

Йодометрический метод заключается в высвобождении связанного диоксида серы при обработке щелочью вытяжки из навески продукта с последующим оттитровыванием раствором йода. По количеству израсходованного на титрование йода определяют общее количество диоксида серы.

При определении сорбиновой кислоты используют либо спектрофотометрический, либо фотоколориметрический метод. Оба метода основаны на отгонке сорбиновой кислоты из навески анализируемого продукта в токе пара с последующим определением ее либо путем измерения оптической плотности отгона на спектрофотометре , либо после получения цветной реакции – на фотоэлектроколориметре.

Среди тяжелых металлов наиболее опасны свинец, кадмий, ртуть и мышьяк.

Поскольку металлы в пищевых продуктах находятся в связанном состоянии, непосредственное их определение невозможно. Поэтому первоначальной задачей химического анализа тяжелых металлов является удаление органических веществ – минерализация (озоление) рекомендуется при определении Cu, Pb, кадмия, Zn, Fe, мышьяка.

Для определения содержания Cu, кадмия и Zn используют метод полярографии.

Для олова – фотометрический метод, который основан на измерении интенсивности желтой окраски раствора комплексного соединения с кверцетином. Для определения используют минерализат, полученный мокрой минерализацией навески пробы продукта массой 5-10 г.

Также фотометрические методы исследования применяют при определении Cu, Fe, мышьяка.

Для определения ртути применяют колориметрический или атомно-абсорбционный метод, который основан на окислении ртути в двухвалетный ион в кислой среде и восстановлении ее в растворе до элементного состояния под воздействием сильного восстановителя.

46. Методы определения минеральных веществ (зола, микро- и макроэлементы, хлориды) в сырье, полуфабрикатах и готовой продукции

В зависимости от количества минеральных веществ в организме человека и пищевых продуктах их подразделяют на макро- и микроэлементы. Так, если массовая доля элемента в организме превышает 10 -2 %, то его следует считать микроэлементом. Доля микроэлементов в организме составляет 10 -3 -10 -5 %. Если содержание элемента ниже 10 -5 % , его считают ультрамикроэлементом.

К макроэлементам относят калий, натрий, кальций, магний, фосфор, хлор, серу.

Микроэлементы условно делят на две группы: абсолютно или жизненно необходимые (кобальт, железо, медь, цинк, марганец, йод, бром, фтор) и, так называемые, вероятно необходимые (алюминий, стронций, молибден, селен, никель, ванадий и некоторые другие). Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма. К наиболее дефицитным минеральным веществам в питании современного человека относятся кальций и железо, к избыточным – натрий и фосфор.

При переработке пищевого сырья, как правило, происходит снижение содержания минеральных веществ (кроме добавления пищевой соли). В растительных продуктах они теряются с отходами. Так, содержание ряда макро- и микроэлементов при получении крупы и муки после обработки зерна снижается , так как в удаляемых оболочках и зародышах этих компонентов находится больше, чем в целом зерне. Например, в среднем, в зерне пшеницы и ржи зольных элементов содержится около 1,7%, в муке же в зависимости от сорта от 0,5 (в высшем сорте) до 1,5% (в обойной).

При очистке овощей и картофеля теряется от 10 до 30% минеральных веществ. Если их подвергают тепловой обработке, то в зависимости от технологии теряется еще от 5 до 30%.

Мясные, рыбные продукты и птица в основном теряют такие макроэлементы, как кальций и фосфор, при отделении мякоти от костей. При тепловой обработке (варке, жарке, тушении) мясо теряет от 5 до 50% минеральных веществ.

Для анализа минеральных веществ в основном используются физико-химические методы – оптические и электрохимические.

Практически все эти методы требуют особой подготовки проб для анализа, которая заключается в предварительной минерализации объекта исследования. Минерализацию можно проводить двумя способами: «сухим» и «мокрым». «Сухая минерализация предполагает проведение при определенных условиях обугливания, сжигания и прокаливания исследуемого образца. «Мокрая» минерализация предусматривает еще и обработку объекта исследования концентрированными кислотами (чаще всего HNO 3 и H 2 SO 4).

Наиболее часто применяемые методы исследования минеральных веществ, представлены ниже.

Фотометрический анализ (молекулярная абсорбционная спектроскопия). Он используется для определения меди, железа, хрома, марганца, никеля и других элементов. Метод абсорбционной спектроскопии основан на поглощении молекулами вещества излучений в ультрафиолетовой, видимой и инфракрасной областях электромагнитного спектра. Анализ можно проводить спектрофотометрическим или фотоэлектроколориметрическим методами.

Эмиссионный спектральный анализ . Методы эмиссионного спектрального анализа основаны на измерении длины волны , интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии. Эмиссионный спектральный анализ позволяет определить элементарный состав неорганических и органических веществ.

Интенсивность спектральной линии определяется количеством возбужденных атомов в источнике возбуждения, которое зависит не только от концентрации элемента в пробе, но и от условий возбуждения. При стабильной работе источника возбуждения связь между интенсивностью спектральной линии и концентрацией элемента (если она достаточно мала) имеет линейный характер, т.е. в данном случае количественный анализ можно также проводить методом градуировочного графика.

Наибольшее применение в качестве источника возбуждения получили электрическая дуга, искра, пламя. Температура дуги достигает 5000-6000 0 С. В дуге удается получить спектр почти всех элементов. При искровом разряде развивается температура 7000-10 000 0 С и происходит возбуждение всех элементов. Пламя дает достаточно яркий и стабильный спектр испускания. Метод анализа с использованием в качестве источника возбуждения пламени называют пламенно-эмиссионный анализом. Этим методом определяют свыше сорока элементов (щелочные и щелочно-земельные металлы, Cu 2+ , Mn 2+ и др.).

Атомно-абсорбционная спектроскопия. Данный метод основан на способности свободных атомов элементов в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн.

В атомно-абсорбционной спектроскопии практически полностью исключена возможность наложения спектральных линий различных элементов, т.к. их число в спектре значительно меньше, чем в эмиссионной спектроскопии.

Уменьшение интенсивности резонансного излучения в условиях атомно-абсорбционной спектроскопии экспоненциальному кону убывания интенсивности в зависимости от толщины слоя и концентрации вещества, аналогичному закону Бугера-Ламберта-Бера

lg J/J 0 = A = klc, (3.10)

где J 0 – интенсивность падающего монохроматического света;

J – интенсивность прошедшего через пламя света;

k – коэффициент поглощения;

l – толщина светопоглощающего слоя (пламени);

с – концентрация.

Постоянство толщины светопоглощающего слоя (пламени) достигается с помощью горелок специальной конструкции.

Методы атомно-абсорбционного спектрального анализа находят широкое применение для анализа практически любого технического или природного объекта, особенно в тех случаях, когда необходимо определить небольшие количества элементов.

Методики атомно-абсорбционного определения разработаны более чем для 70 элементов.

Кроме спектральных методов анализа широкое применение нашли электрохимические методы, из которых выделяются нижеперечисленные.

Ионометрия . Метод служит для определения ионов K + , Na + , Ca 2+ , Mn 2+ , F - , I - , Cl - и т.д.

Метод основан на использовании ионоселективных электродов, мембрана которых проницаема для определенного типа ионов (отсюда, как правило, высокая селективность метода).

Количественное содержание определяемого иона проводится либо с помощью градуировочного графика, который строится в координатах Е-рС, либо методом добавок. Метод стандартных добавок рекомендуется использовать для определения ионов в сложных системах , содержащих высокие концентрации посторонних веществ.

Полярография . Метод переменно-токовой полярографии используют для определения токсичных элементов (ртуть, кадмий, свинец, медь, железо).

1

Металлы являются элементами, необходимые для полноценной жизнедеятельности и нормального функционирования организма в допустимых количествах в продуктах питания. Но в то же время избыточное содержание тяжелых металлов наносит вред на организм человека, вызывая ряд заболеваний. Они могут попасть в продукты питания различными способами: через воздух, почву, воду, или же вследствие нарушений правил технологической обработки пищевых продуктов и сырья. Поэтому необходимо иметь представление о содержании предельно допустимого содержания тяжелых металлов и их последствий, чему и посвящена статья в изучении действий тяжелых металлов на целостную живую систему.

тяжелые металлы

заболевание

1. Жидкин В.И., Сульдина Т.И. Радиоактивные загрязнения пищевых продуктов, их последствия для здоровья человека и радиозащита питанием // Интеграция образования в условиях инновационной экономики: материалы Междунар. науч.-практ. конф.: в 2 частях. – Саранск, 2014. – С. 118-122.

2. Жидкин В.И., Семушев А.М. Основные загрязнители продовольственного сырья и пищевых продуктов // Вторые чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 12 мая 2010 г.). – Саранск, 2010. – С. 28-31.

3. Жидкин В.И., Семушев А.М. Пути загрязнения продовольствия // Третьи чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 13 мая 2011 г.). – Саранск, 2011. – С. 20-23.

4. Семушев А.М. Влияние загрязнителей на качество продовольственных товаров растительного происхождения // Кооперация в системе общественного воспроизводства: материалы Междунар. науч.-практ. конф. (Саранск, 9-10 апр. 2013 г.) в 2 ч. – Саранск: Принт-Издат, 2013. – Ч. 2. – С. 221-223.

5. Жидкин В.И., Семушев А.М. Загрязнение пищевых продуктов нитратами, пестицидами и тяжелыми металлами // Предпринимательство. – 2014. – № 5. – С. 190-198.

6. Жидкин В.И., Семушев А.М. Экология. Загрязнение продовольственных товаров: учебное пособие. Саран. кооп. ин-т РУК. – Саранск: Принт-Издат, 2013. – 80 с.

7. Позняковский В.М. Гигиенические основы питания, безопасность и экспертиза товаров. – 5-е изд., испр. и доп. / Гриф МО и науки РФ. – Новосибирск: Сибир. универ. изд-во, 2007. – 485 с.

Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 50) относятся к числу важнейших. Тяжелые металлы - это медь, хром, цинк, молибден, марганец, свинец, кадмий, никель, мышьяк, ртуть, в очень малых количествах входят в состав биологически активных веществ, которые необходимы для нормальной жизнедеятельности растений и человека; они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве, где поглощаются растениями и вовлекаются в пищевые цепи и, соответственно, в нашей пище, в косметике и т.д.

Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Некоторые элементы, такие как ванадий или кадмий, обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов .

Средняя концентрация тяжелых металлов в почве около 10 мг на 1 кг. Как недостаток, так и избыток их в почве приведут к нежелательным последствиям. Некоторые тяжелые металлы (например, мышьяк) относится к разряду канцерогенов.

Ртуть - весьма токсичный яд кумулятивного действия (т. е. способный накапливаться), поэтому в молодых животных его меньше чем в старых, а в хищниках (тунец, меч-рыба, акула - 0,7 мг/кг) больше, чем в тех объектах, которыми они питаются. Поэтому хищной рыбой лучше не злоупотреблять в питании. Из других животных продуктов «накопителем» ртути являются почки животных (в сыром виде) - до 0,2 мг/кг; поскольку почки при кулинарной обработке предварительно многократно вымачивают по 2-3 ч со сменой воды и дважды вываривают, то в оставшемся продукте содержание ртути уменьшается почти в 2 раза. Из растительных продуктов ртуть больше всего содержится в орехах, какао-бобах и шоколаде (до 0,1 мг/кг). В большинстве остальных продуктов содержание ртути не превышает 0,01-0,03 мг/кг .

Ртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм - заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

Свинец - яд высокой токсичности. В большинстве растительных и животных продуктов естественное его содержание не превышает 0,5-1,0 мг/кг. Больше всего свинца содержится в хищных рыбах (в тунце до 2,0 мг/кг), моллюсках и ракообразных (до 10 мг/кг) . В основном повышение содержания свинца наблюдается консервах, помещенных в так называемую сборную жестяную тару которая спаивается сбоку и к крышке припоем, содержащим определенное количество свинца. К сожалению, пайка иногда бывает некачественная (образуются брызги припоя), и хотя консервные банки еще дополнительно покрываются специальным лаком это не всегда помогает. Имеются случаи, правда довольно редкие (до 2%), когда в консервах из этой тары накапливается, особенно при длительном хранении, до 3 мг/кг свинца и даже выше что, конечно, представляет опасность для здоровья, поэтому продукты в этой сборной жестяной таре не хранят более 5 лет.

Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты, где реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием -S-Pb-S-. Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечно-сосудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов.

В настоящее время установлены следующие максимальные уровни свинца в пищевых продуктах: молоко; продукты для новорожденных - 0,02 мг/кг; фрукты, овощи; мясо крупного рогатого скота, овец и свиней, птицы; жир животных и домашней птицы, растительные масла; молочный жир - 0,1 мг/кг; мелкие фрукты, яблоки и виноград; зерна злаков, бобы, вино - 0,2 мг/кг; съедобные субпродукты крупного рогатого скота, свиней и домашней птицы - 0,5 мг/кг.

Кадмий - это весьма токсичный элемент, в пищевых продуктах содержится примерно в 5-10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг). Содержание кадмия увеличивается в консервах из сборной жестяной тары, так как кадмий, как и свинец, переходит в продукт из некачественно выполненного припоя, в котором также содержится определенное количество кадмия.

Повышенное содержание кадмия может произойти в результате попадания его из окружающей среды, например для выращивания сельскохозяйственных культур или животных используют территории, загрязненные кадмием . В этом случае группой риска являются овощи, фрукты, мясо, молоко. Пшеница содержит кадмия втрое больше, чем рожь. Кадмий накапливается, в первую очередь, в грибах, во многих растениях (особенно зерновых, овощных и стручковых культурах, а также орехах) и животных (прежде всего, водных). В растения тяжелый металл проникает из почвы. Одним почвам изначально свойственно повышенное содержание кадмия, другие загрязнены промышленными отходами или обработаны удобрениями, содержащими кадмий. Кадмия естественного в пищевых продуктах содержится примерно в 5-10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг).

Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30-40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

Мышьяк, химический элемент, присутствующий во всей в окружающей среде, человек ни как не может его контролировать. Источник загрязнения пищи и воды мышьяком: бытовые отходы, выбросы промышленных предприятий, химические загрязнения, фермерство, пестициды на полях, которые затем вместе с дождем попадают в грунтовые воды и реки, не говоря уже и высоком уровне мышьяка в самой почве . Из-за его широкого распространения, мышьяк был в нашей пищевой цепи с начала времен. Исследования показывают, что на сегодняшний день уровень мышьяка повысился катастрофически, из-за деятельности человека.

Мышьяк содержится в следующих пищевых продуктах: белый и коричневый рис, яблочный сок, куриное мясо, коктейли белка и белковый порошок.

Длительное воздействие значительной концентрации мышьяка, провоцирует рак печени, почек, мочевого пузыря, легких или простаты. Признаки отравления мышьяком: понос, острые боли в животе, рвота, если доза слишком высока, организм ее не смог вывести, затем следует покалывание в ногах, руках, мышечные судороги и смерть. Если мышьяк регулярно присутствует в вашей питьевой воде, продуктах питания, вы не минуемо заболеете раком или появится кожная патология. Возможны и следующие последствия: развитие сердечно - сосудистых заболеваний, диабет. Регулярное отравление мышьяком в небольших дозах, проявляется изменением пигментации, гиперкератозом - чрезмерное утолщение рогового слоя кожи (на ладонях, подошвах ног), после пяти лет отравления неминуем рак кожи, гиперкератоз является предвестником рака кожи - это официальное заявление ВОЗ. В дополнение к раку кожи, длительное воздействие мышьяка, также может привести к раку мочевого пузыря и легких, повреждению кровеносных сосудов, бородавкам на коже и нарушений функций нервной системы. Международное агентство по изучению рака (МАИР) отнесла мышьяк и соединения мышьяка в нашей пище и воде, к канцерогенным веществам. Регулярное воздействие низкого уровня мышьяка на организм беременной приводит к дефектам у развивающегося плода.

Медь является важнейшим микроэлементом, необходимым организму для целого ряда функций - от формирования костей и соединительной ткани до выработки специфических ферментов. По рекомендации ВОЗ суточная потребность в меди для взрослых составляет 1,5 мг. Медь присутствует во всех тканях организма, но основные ее запасы находятся в печени, меньше - в мозге, сердце, почках и мышцах. Хотя медь и является третьим по количеству микроэлементом в организме человека после железа и цинка, всего-то ее содержится в теле около 75-100 мг.

Около 90% меди в крови находится в составе соединений, которые транспортируют железо в ткани, а также выступают в качестве ферментов, ускоряющих его окисление, то есть переработку, усваивание. Именно поэтому очень часто симптомы нехватки железа (например, низкий гемоглобин) на самом деле означают дефицит меди.

Кроме того, медь - компонент лизилоксидазы, фермента, который участвует в синтезе коллагена и эластина, двух важных структурных протеинов, находящихся в костях и соединительных тканях. Важнейший фермент тирозиназа, который превращает тирозин в меланин - пигмент, придающий цвет коже и волосам, также содержит медь. Также медь содержится в веществах, которые входят в состав меланинового покрытия, защищающего нервы.

Чрезмерное потребление меди может стать причиной болей и колик в животе, тошноты, диареи, рвоты, поражения печени. К тому же некоторые эксперты считают, что повышенный уровень меди, особенно при дефиците цинка, может быть фактором, провоцирующим шизофрению, гипертензию, депрессию, бессонницу, раннее старение и предменструальный синдром. Послеродовая депрессия также может быть следствием высокого уровня меди. Это происходит по причине того, что во время беременности медь накапливается в организме примерно в двойной дозе и требуется до трех месяцев, чтобы снизить ее уровень до нормального.

Поскольку избыток меди выделяется через желчь, отравление медью может случиться у людей с нарушениями работы печени или другими заболеваниями, связанными со сниженной функцией выделения желчи.

Токсичный эффект от повышенного уровня меди в тканях наблюдается у пациентов с болезнью Вильсона, генетическим расстройством способности аккумулировать медь в различных органах, что приводит к нарушениям синтеза белка для переноса меди в крови.

Содержание цинка в организме взрослого человека небольшое - 1,5-2 г. Суточная потребность в цинке составляет 10-15 мг. Верхний допустимый уровень потребления цинка установлен в 25 мг в сутки. Он действует на наш организм на уровне клеток, напрямую участвуя в обмене веществ: этот важнейший микроэлемент является частью всех витаминов, ферментов и гормонов, по сути, занимая 98% всех наших клеток.

Цинк незаменим для нормального функционирования тела человека и, конечно же, духа, ведь «в здоровом теле - здоровый дух». Наличие этого микроэлемента в организме обеспечивает человеку нормальную жизнедеятельность и хорошее самочувствие. Напротив, его недостаток может вызвать ряд серьёзных проблем: нарушения репродуктивной функции; сбои в работе иммунной системы; аллергические реакции; дерматит; плохое кровообращение; анемия; замедление процесса заживления; торможение нормального роста, полового созревания; потеря вкусовых качеств и обоняния; потеря волосяного покрова; у спортсменов - снижение полученных результатов; у подростков - склонность к алкоголизму; у беременных женщин - прерывание беременности; преждевременные роды; рождение ослабленных детей с низким весом.

Итак, больше всего цинка находится в зерновых и бобовых культурах и в орехах. Однако рекордсменами по содержанию этого полезного вещества в 100 гр являются устрицы. Также богаты цинком угри в отварном виде и пшеничные отруби, мясные изделия, сухие или прессованные дрожжи. Цинк содержится также в мясе птицы, сырах, луке, картофеле, чесноке, зелёных овощах, гречневой крупе, чечевице, сое, ячменной муке, сухих сливках, сельдерее, спарже, редьке, хлебе, цитрусовых, яблоках, инжире, финиках, чернике, малине, чёрной смородине .

Токсические элементы могут попасть в опасных для человека концентрациях в пищевые продукты из сырья и в процессе технологической обработки только при нарушении соответствующих технологических инструкций. Так, в растительном сырье они могут появиться при нарушении правил применения ядохимикатов, содержащих в своем составе такие токсические элементы, как ртуть, свинец, мышьяк и др. Повышенное количество токсических элементов может появиться в зоне вблизи промышленных предприятий, загрязняющих воздух и воду недостаточно очищенными отходами производства.

В таблице приведено содержание предельно допустимых концентраций тяжелых металлов (таблица 1).

В концентрированных растительных и животных продуктах (сушеных, сублимированных и т. д.) предельно допустимая концентрация тяжелых металлов определяется, как правило, при пересчете на исходный продукт.

Задача специалистов пищевой промышленности - постоянно контролировать пищевое сырье и готовую продукцию для того, чтобы обеспечить выпуск безвредных для здоровья продуктов питания.

В домашнем питании тоже необходим контроль, который заключается в предупреждении загрязнения консервированных продуктов свинцом. Рекомендуется вскрытые консервы из сборных жестяных банок, даже для кратковременного хранения помешать в стеклянную или фарфоровую посуду, так как под влиянием кислорода воздуха коррозия банок резко увеличивается и буквально через несколько дней содержание свинца (и олова) в продукте многократно возрастает. Нельзя также хранить маринованные, соленые и кислые овощи и фрукты в оцинкованной посуде во избежание загрязнения продуктов цинком и кадмием (цинковый слой также содержит некоторое количество кадмия) .

Нельзя хранить и приготавливать пищу в декоративной фарфоровой или керамической посуде (т. е. в посуде, предназначенной для украшения, но не для пищи), так как очень часто глазурь, особенно желтого и красного цвета, содержит соли свинца и кадмия, которые легко переходят в пищу, если такую посуду использовать для еды.

Таблица 1

Продукты

Свинец (Pb)

Кадмий (Cd)

Мышьяк (As)

Зернобобовые

Сахар и конфеты

Молоко и жидкие молочные

продукты

Масло растительное и изделия

Овощи, ягоды, фрукты свежие

и свежезамороженные

Овощи, ягоды, фрукты и изделия из них в сборной жестяной таре

Мясо и птица свежие

Мясо и птица консервированные

в сборной жестяной таре

Рыба свежая и мороженная

Рыба консервированная в сборной жестяной таре

Для приготовления и хранения продуктов следует использовать только посуду, специально предназначенную для пищевых целей. То же самое относится к красивым пластмассовым пакетам и пластмассовой посуде. В них можно хранить и то непродолжительное время только сухие продукты.

Для выведения из организма тяжелых элементов необходимо как можно чаще употреблять в пищу молочные продукты, содержащие кальций, большое количество клетчатки, больше овощей, сухофруктов и зерновых продуктов. Тогда тяжелые металлы будут оседать в желудочно-кишечном тракте, и выводиться из организма, не всасываясь.

Библиографическая ссылка

Сульдина Т.И. СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРОДУКТАХ ПИТАНИЯ И ИХ ВЛИЯНИЕ НА ОРГАНИЗМ // Рациональное питание, пищевые добавки и биостимуляторы. – 2016. – № 1. – С. 136-140;
URL: http://journal-nutrition.ru/ru/article/view?id=35727 (дата обращения: 28.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»